Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 11(20): 13884-13897, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707825

RESUMO

Plant-herbivore coevolutionary interactions have led to a range of plant defenses that minimize insect damage and a suite of counter adaptations that allow herbivores to feed on defended plants. Consuming plant secondary compounds results in herbivore growth and developmental costs but can have beneficial effects such as deterrence or harm of parasitoid enemies. Therefore, the role of secondary compounds on herbivore fitness must be considered in the context of the abundance and level of harm from natural enemies and the costs herbivores incur feeding on plant secondary compounds.In this study, I combined field measurements of Cotesia congregata wasp parasitism pressure with detailed measurements of the costs of plant secondary compounds across developmental stages in the herbivore host, Manduca sexta.I show that C. congregata parasitoids exert large negative selective pressures, killing 31%-57% of M. sexta larvae in the field. Manduca sexta developed fastest during instars most at risk for parasitoid oviposition but growth was slowed by consumption of plant secondary compounds. The negative effects of consuming plant secondary compounds as larvae influenced adult size traits but there were no immune, survival, or fecundity costs.These results suggest that developmental costs experienced by M. sexta herbivores consuming defensive compounds are minor in comparison to the strong negative survival pressures from abundant parasitoid enemies.

2.
Trop Anim Health Prod ; 53(2): 196, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674897

RESUMO

The aim of the study was to conduct a basic evaluation of the in vitro effect of crude protein (CP) levels in concentrate and a saponin extract from Sesbania graniflora pods meal (SES) on the kinetics of gas, nutrient digestibility, ruminal fermentation, protein efficiency uses, and methane (CH4) mitigation. Eight treatments were formed according to a 2 × 4 factorial design in a completely randomized design (CRD). The first factor referred to the levels of CP at 14 and 16% on dry matter (DM) basis in the concentrate diet, and the second factor referred to the levels of SES supplementation at 0, 0.2, 0.4, and 0.6% of the total substrate on a DM basis. The results showed that S. graniflora pod meal contained 21.73% CP, 10.87% condensed tannins, and 16.20% crude saponins, respectively. Most kinetics of gas as well as cumulative gas were not influenced by the CP levels or SES addition (P > 0.05) except gas production from immediately soluble fraction (a) was significantly different by CP levels. Ammonia-nitrogen concentration of incubation at 4 h was significantly difference based on the CP levels and SES supplementation (P < 0.05). Increasing SES levels significantly (P < 0.05) decreased protozoal population. In vitro digestibility of DM and organic matter was not changed by CP levels or SES addition. Butyrate and acetate to propionate ration were decreased, and propionate was increased when increasing SES dose (P < 0.05), while CP levels did not change total volatile fatty acids and molar portions. The ruminal CH4 concentration was reduced by 44.12% when 0.6% SES was added after 8 h of incubation. Therefore, SES supplementation could enhance protein utilization and improve rumen fermentation particularly lowering CH4 production.


Assuntos
Fermentação/efeitos dos fármacos , Metano/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas/metabolismo , Rúmen/efeitos dos fármacos , Saponinas/farmacologia , Sesbania/química , Ração Animal , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Gases/metabolismo , Rúmen/metabolismo , Saponinas/isolamento & purificação
3.
J Dairy Res ; 87(4): 397-399, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33168112

RESUMO

This research communication presents a study evaluating the effects of dried sainfoin (Onobrychis viciifolia) supplemented to dairy goats on their milking performance and feed protein efficiency under commercial conditions. During July and August 2015, a herd of 20 Alpine goats was divided into two treatments (n = 10), balanced by milk yield and days in milk. They were supplied with either 700 g/d sainfoin pellets (condensed tannins: 4.0 g/kg DM) or 700 g/d lucerne (Medicago sativa) pellets (condensed tannins: 0.3 g/kg DM). The goats remained in one herd and were separated by treatments only during milking. In the milking parlour each goat received 350 g of the respective pellets, twice daily. During the day, the herd had 5 h access to a high-quality pasture (crude protein >200 g/kg DM), whilst during the rest of the day and the night animals were housed and offered grass hay ad libitum. The experiment lasted for seven weeks. Individual milk yields and composition were controlled in weeks 1, 3, 5, and 7 after the start of the experiment. No differences between the treatments were found, either for milk, protein or urea yields, nor for protein, urea and fat concentrations. Urea to protein ratio in milk was lower with the sainfoin treatment. In conclusion, sainfoin compared to lucerne, supplied for 7 weeks to dairy goats at approximately 25% of the diet, had only weak beneficial and no adverse effects on milking performance, milk composition and feed protein efficiency under commercial conditions of pasture-based dairy production.


Assuntos
Ração Animal , Proteínas na Dieta , Fabaceae/química , Cabras/fisiologia , Taninos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Comportamento Alimentar , Feminino , Valor Nutritivo
4.
Microorganisms ; 8(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872148

RESUMO

Animal gut microbiomes can be clustered into "enterotypes" characterized by an abundance of signature genera. The characteristic determinants, stability, and resilience of these community clusters remain poorly understood. We used plateau pika (Ochotona curzoniae) as a model and identified three enterotypes by 16S rDNA sequencing. Among the top 15 genera, 13 showed significantly different levels of abundance between the enterotypes combined with different microbial functions and distinct fecal short-chain fatty acids. We monitored changes in the microbial community associated with the transfer of plateau pikas from field to laboratory and observed that feeding them a single diet reduced microbial diversity, resulting in a single enterotype with an altered composition of the dominant bacteria. However, microbial diversity, an abundance of some changed dominant genera, and enterotypes were partially restored after adding swainsonine (a plant secondary compound found in the natural diet of plateau pikas) to the feed. These results provide strong evidence that gut microbial diversity and enterotypes are directly related to specific diet, thereby indicating that the formation of different enterotypes can help animals adapt to complex food conditions. Additionally, natural plant secondary compounds can maintain dominant bacteria and inter-individual differences of gut microbiota and promote the resilience of enterotypes in small herbivorous mammals.

5.
J Pharm Biomed Anal ; 188: 113368, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32544758

RESUMO

Panax ginseng is one of the most valuable medicinal plants in the world, and wild-forest (WG) and artificial-forest (AG) ginseng are very popular in the ginseng market, with ginsenosides constituting a majority of the bioactives. Research on the biochemical and physiological patterns of metabolic accumulation in different tissues of ginseng cultivated under various conditions is relatively scarce. We profiled metabolites using GC/MS and LC/MS to explore the bioactive component changes and interrelationships that occur in 7 tissues of WG and AG. In total, 149 primary metabolites and 46 secondary compounds were found in aboveground and belowground tissues. Metabolite changes associated with primary and secondary biochemistry were observed, and the levels of ginsenoside F2 and other compounds showed a significant correlation by statistical analysis in ginseng under both cultivation methods, as observed for secondary compounds and C and N metabolites. In addition, the number of secondary components was higher in the aboveground parts than in the belowground parts, showing a different pattern, and the same accumulation pattern of compounds involved in C and N metabolism was observed in individual plant tissues, but the high rate of photosynthesis and energy metabolism in WG provided energy for the biosynthesis of secondary compounds. Furthermore, artificial neural network models explained the variation in the secondary compounds very well via the combination of several different metabolites from WG and AG. Finally, C and N metabolism plays a key role in secondary compound biosynthesis in specific tissues and cultivation conditions and highlights large-scale metabolite patterns in WG and AG.


Assuntos
Ginsenosídeos , Panax , Plantas Medicinais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Ginsenosídeos/análise , Espectrometria de Massas
6.
J Chem Ecol ; 46(1): 84-98, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31858366

RESUMO

Non-nutritive phytochemicals (secondary metabolites and fibre) can influence plant resistance to herbivores and have ecological impacts on animal and plant population dynamics. A major hindrance to the ecological study of these phytochemicals is the uncertainty in the compounds one should measure, especially when limited by cost and expertise. With the underlying goal of identifying proxies of plant resistance to herbivores, we performed a systematic review of the effects of non-nutritive phytochemicals on consumption by leporids (rabbits and hares) and cervids (deer family). We identified 133 out of 1790 articles that fit our selection criteria (leporids = 33, cervids = 97, both herbivore types = 3). These articles cover 18 species of herbivores, on four continents. The most prevalent group of phytochemicals in the selected articles was phenolics, followed by terpenes for leporids and by fibre for cervids. In general, the results were variable but phenolic concentration seems linked with high resistance to both types of herbivores. Terpene concentration is also linked to high plant resistance; this relationship seems driven by total terpene content for cervids and specific terpenes for leporids. Tannins and fibre did not have a consistent positive effect on plant resistance. Because of the high variability in results reported and the synergistic effects of phytochemicals, we propose that the choice of chemical analyses must be tightly tailored to research objectives. While researchers pursuing ecological or evolutionary objectives should consider multiple specific analyses, researchers in applied studies could focus on a fewer number of specific analyses. An improved consideration of plant defence, based on meaningful chemical analyses, could improve studies of plant resistance and allow us to predict novel or changing plant-herbivore interactions.


Assuntos
Herbivoria/fisiologia , Compostos Fitoquímicos/metabolismo , Plantas/química , Animais , Cervos , Evolução Molecular , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas/metabolismo , Coelhos , Terpenos/metabolismo
7.
Trop Anim Health Prod ; 51(7): 2003-2010, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30997631

RESUMO

The objective of the present research was to determine the influence of various doses of the pellets containing DR seed meal (PEDEM) on in vitro CH4 gas production, in vitro digestibility, protozoal count, and ruminal fermentation characteristics. The study was designed as a completely randomized design with eight levels of PEDEM supplementation at 0, 2, 4, 6, 8, 10, 12, and 14 mg DM. Gas production rate constants for the insoluble fraction (c) and cumulative gas production at 96 h were quadratically increased when PEDEM was supplemented (P < 0.05). The concentration of NH3-N was linearly increased when the PEDEM concentration (P < 0.05) was increased, whereas the population of protozoa was linearly decreased when the level of PEDEM supplementation (P < 0.05) was increased. The supplementation of PEDEM in substrate quadratically affected the mean values of in vitro dry matter digestibility (IVDMD), in vitro organic matter digestibility (IVOMD), and in vitro NDF digestibility (P < 0.05). TVFA, acetic acid (C2), and butyric acid (C4) were not altered by different doses of PEDEM supplementation (P > 0.05). In contrast, the concentration of propionic acid (C3) was quadratically affected with the supplementation of PEDEM (P = 0.05). The inclusion of PEDEM did not change the CH4 concentration at 6 h of incubation (P > 0.05), whereas the CH4 concentration at 24 h of incubation and the mean values were linearly reduced with additional doses of PEDEM (P < 0.05). Compared with the control group, the mean CH4 concentration was reduced at 51.1% with 12 mg PEDEM, whereas 59.6% was reduced with 14 mg PEDEM supplementations. The supplementation of PEDEM at 12 mg has the potential to manipulate rumen fermentation, to manipulate in vitro digestibility and to reduce protozoa and CH4 production.


Assuntos
Digestão/efeitos dos fármacos , Fabaceae/química , Fermentação/efeitos dos fármacos , Metano/metabolismo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Masculino , Distribuição Aleatória , Rúmen/metabolismo , Sementes/química
8.
J Dairy Sci ; 102(5): 3781-3804, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30904293

RESUMO

The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.


Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Insaturados/metabolismo , Metano/metabolismo , Microbiota/efeitos dos fármacos , Polifenóis/farmacologia , Rúmen/microbiologia , Animais , Dieta/veterinária , Fermentação , Hidrogenação , Microbiota/fisiologia , Plantas/química , Taninos/administração & dosagem
9.
Physiol Behav ; 194: 302-310, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906471

RESUMO

Plant bioactives can potentially benefit herbivores through their effects on health and nutrition. The objective of this study was to determine the importance of polyphenols and terpenes on the ability of lambs to self-select these compounds when challenged by a parasitic infection and the subsequent impact on their health and productivity. Thirty-five lambs were housed in individual pens and assigned to five treatment groups (7 animals/group), where they received: 1) A basal diet of beet pulp:soybean meal (90:10) (CONTROL); 2) The same diet, but containing 0.3% of bioactive natural plant compounds extracted from grape, olive and pomegranate (BNP); 3) A simultaneous offer of the diets offered to the Control and BNP groups (Choice-Parasitized; CHP-1); 4) The Control diet, and when lambs developed a parasitic infection, the choice described for CHP-1 (CHP-2); and 5) The same choice as CHP-1, but animals did not experience a parasitic burden (Choice-Non-Parasitized; CHNP). Lambs, except CHNP, were dosed with 10,000 L3 stage larvae of Haemonchus contortus. Infected lambs under choice treatments (CHP-1 and CHP-2) modified their feeding behavior in relation to the CHNP group as they increased their preference for the feed containing polyphenols and terpenes, interpreted as a behavior aimed at increasing the likelihood of encountering medicinal compounds and nutrients in the environment that restore health. This change in behavior corresponded with an improvement in feed conversion efficiency. However, an increased preference for the diet with added plant bioactives did not have an effect on parasitic burdens, hematological parameters, blood oxidation, or serum concentration of IgE.


Assuntos
Comportamento Alimentar , Hemoncose/veterinária , Compostos Fitoquímicos , Doenças dos Ovinos , Ração Animal , Animais , Comportamento de Escolha , Feminino , Hemoncose/fisiopatologia , Haemonchus , Imunoglobulina E/sangue , Masculino , Distribuição Aleatória , Ovinos , Doenças dos Ovinos/fisiopatologia
10.
Sci Total Environ ; 618: 39-47, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29126025

RESUMO

The natural weathering of EAF (Electric Arc Furnace) and LF (Ladle Furnace) steel slag was evaluated through changes in the mineralogical and elemental composition. For that purpose, black steel slag and mixture of black and white steel slag were collected from two forest tracks, where they had been used as filler 19 and 35years ago respectively in a protected mountain area. Primary/original and secondary/degradation compounds were identified by spectroscopic techniques (Raman Spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS)). Among secondary compounds, brucite (Mg(OH)2), portlandite (Ca(OH)2), thaumasite (Ca3Si(CO3)(SO4)(OH)6.12H2O) were identified. Secondary compounds indicated the reactivity of the slag with the surrounding environment (underground waters, atmosphere, lands and organisms), and volume change of the material. This effect could promote fractures in the road and thus, increase the possibility of leaching of hazardous elements (HE), present in the slags, to lands, rivers, etc. Besides, potentially toxic compounds such as hashemite (BaCrO4) and crocoite (PbCrO4) were identified as Cr(VI), which means a potential hazard to the surrounding environment and human life, since the sampling location is a mountain area with recreational activities. Cr(VI) can affect to the growth and development of plants, soil microbial communities, animals and cause allergy, asthma and respiratory tract cancer in humans. Moreover, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) allowed us to observe similar ranges of elemental concentrations in slag samples of the two forest tracks, with the exception of Ca, Mg, Sr, Pb, Ni and As concentration values. They were higher in the forest track with mixture of black and white slag than in the track with only black slag, and therefore, more likely to be leached and to be an environmental risk over time. By contrast, Na, V, Cr and W values were higher in the track with only black steel slag.

11.
ACS Synth Biol ; 5(12): 1557-1565, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27389525

RESUMO

Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine ß-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.


Assuntos
Escherichia coli/genética , Isotiocianatos/metabolismo , Engenharia Metabólica/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/metabolismo , Engenharia Genética/métodos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Liases/genética , Liases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metabolismo Secundário , Sulfotransferases/genética , Sulfotransferases/metabolismo
12.
Molecules ; 21(2): 182, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26848649

RESUMO

Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the "Plant Cell Factory" concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.


Assuntos
Biotecnologia , Técnicas In Vitro/métodos , Células Vegetais/metabolismo , Taxoides/metabolismo , Acetatos/metabolismo , Ciclodextrinas/biossíntese , Ciclopentanos/metabolismo , Ginsenosídeos/biossíntese , Lignanas/biossíntese , Oxilipinas/metabolismo
13.
Pest Manag Sci ; 72(7): 1359-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26423365

RESUMO

BACKGROUND: Bt cotton has been widely planted in China for over a decade to control H. armigera, but field surveys indicate increasing resistance in the pest. It has been speculated that accumulating plant secondary compounds in mature cotton may interact with Bt toxins and affect the toxicity of Bt to H. armigera. RESULTS: Both quercetin, one of the main flavonoids in cotton, and the Bt toxin Cry1Ac protein had significant negative effects on the growth, development and survival of H. armigera when added singly to artificial diet, but their effects were inhibited when added in combination. Quercetin was antagonistic to Cry1Ac toxicity at all tested concentrations. CONCLUSION: The accumulation of quercetin might be one factor contributing to the reduced toxicity of mature Bt cotton plants to H. armigera, and could partially explain the reduced efficacy of Cry1Ac in controlling this pest in the field. © 2015 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Quercetina/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Gossypium/parasitologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento
14.
Toxicol Appl Pharmacol ; 274(3): 393-401, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361551

RESUMO

Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica , Sigmodontinae/metabolismo , Sequência de Aminoácidos , Animais , Monoterpenos Bicíclicos , Clonagem Molecular , DNA Complementar/genética , Escherichia coli , Dados de Sequência Molecular , Monoterpenos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA , Sigmodontinae/genética
15.
Neotrop. entomol ; 40(4): 495-500, July-Aug. 2011. tab
Artigo em Inglês | LILACS | ID: lil-599812

RESUMO

The potential of populations of Bemisia tabaci (Genn.) to become resistant to insecticides has stimulated research into alternative tactics of integrated pest management such as the induction of host-plant resistance. Recent data have shown that silicon can increase the degree of resistance of host plants to insect pests. Therefore the aim of our work was to study the effects of silicon application on the vegetative development of soybean plants and on the induction of resistance to the silverleaf whitefly, B. tabaci biotype B. We performed choice and no-choice tests of oviposition preference on two soybean cultivars, IAC-19 (moderately resistant to B. tabaci biotype B) and MONSOY-8001 (susceptible), with and without application of silicon. Silicon did not affect silverleaf whitefly oviposition preferences, but caused significant mortality in nymphs. Thus, silicon increased the degree of resistance to silverleaf whitefly. Silicon decreased the production of phenolic compounds, but did not affect lignin production. However, when applied to cultivar IAC-19, it increased the production of non-protein organic nitrogen. Silicon had no effect on the vegetative development of soybean plants, but it increased the degree of resistance to the silverleaf whitefly. We conclude that silicon applications combined with cultivar IAC-19 can significantly decrease silverleaf whitefly populations, having a positive impact both on the soybean plant and on the environment.


Assuntos
Animais , Resistência à Doença/efeitos dos fármacos , Hemípteros , Silício/farmacologia , Soja/efeitos dos fármacos , Soja/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...